buy stone meteorites

Old Camp Wash – classified by Aerolite Meteorites

Stones constitute the largest group of meteorites. They originated in the outer crust of a planet or asteroid. Recently-fallen stone meteorites are covered by a thin, black rind known as fusion crust, which forms as the rock’s surface is burned during flight. Fusion crust is fragile and deteriorates easily, so stone meteorites that have been on the surface of our planet for a long time have a similar appearance to Earth rocks. Visible inside most stone meteorites are tiny, glassy, spheres known as chondrules. Forged at the very dawn of the solar system, these chondrules are far older than our own planet. Some stone meteorites, known as carbonaceous chondrites, have been found to contain water, salt, and even amino acids. In the distant past, these meteorites may have carried the very building blocks of life to Earth.

For those looking to buy stone meteorites, our catalog of available pieces is presented here in alphabetical order. Click on any image for additional photographs. All specimens are fully guaranteed and we pride ourselves on outstanding customer service. Please contact us directly with questions.


Ordinary chondrite L3
Witnessed fall in Oyo, Nigeria, April 19, 2018

Aba Panu is a witnessed fall that occurred on April 19, 2018, when numerous stones landed between the Nigerian villages of Ipapo and Tede. An astonishing entry velocity of almost 13 miles per second was recorded for the incoming mass. That is around 45,000 miles per hour!

Aba Panu is an L3 chondrite, meaning it is a stone meteorite comparatively low in metal (nickel-iron) while its chondrules are as close to pristine as we can expect to see. L3 meteorites are particularly interesting to researchers and collectors alike, as they underwent a very low degree of alteration on the parent bodies. Their 4.67-billion-year-old chondrules give us perhaps our best look back at the earliest moments of our own solar system. Aba Panu is delightfully rich in them: white, grey, and cream- colored chondrules and chondrule fragments, varying greatly in size from about 0.1 to several mm across. Densely packed together, their abundance is marvelous, in fact, the meteorite seems to be made up almost entirely of these tiny, ancient intriguing spheres. Also visible are a few nickel-iron flecks and occasional armored chondrules. Combine that with the fact that in all of meteorite history there have only been seven L3 witnessed falls (none of the other six are readily available to collectors) and you have a highly desirable and rarely-offered space rock collectible.


Carbonaceous chondrite (CM2)
Alajuela, Costa Rica on April  23, 2019 at 21:07 local time

A significant fireball traveling from the northwest to the southeast, shortly after 9 pm was observed by many witnesses and recorded on cameras belonging to the National Seismological Network. Fireballs that produce new meteorites on Earth are always big news, but not since 1969 had there been a comparable event. It was not the size of the fireball that generated almost unprecedented excitement, but rather the type of meteorite — an extremely rare carbonaceous chondrite known as a CM2 — which represent only 0.8% of all known meteorites. Witnessed falls produce meteorites that display rich jet black  fusion crust, which occurs when the surface of incoming meteorites is superheated in our atmosphere. This rind is fragile, and affected by terrestrial weathering when meteorites sit on Earth’s surface for several years.

The Aguas Zarca fall produced primarily small stones, the majority of which were unbroken; a rare occurrence due to the violent effects experienced by most meteorites as they blast through Earth’s atmosphere. Meteoriticists noted the stone’s high degree of brecciation. Some stones exhibit clasts with abundant chondrules. Some specimens are rich in nickel-iron and will adhere to a magnet, while others show no attraction. The variation in these specimens is a reflection of the heterogeneity of the parent body, caused by pummeling and re-accretion of other asteroidal material as it hurtled through space.


Al Haggounia 001,  El-melt rock
Found in Morocco, 2007

Al Haggounia was first discovered in Western Sahara in 2005 near Al Haggounia. Portions of the meteorite were excavated from beneath a sabkha lake and several pieces were found embedded in terrestrial rock. Scientists estimate the meteorite fell in the Late Quaternary period, which makes it a “fossil” or “paleo” meteorite.

There’s been some debate over the classification of Al Haggounia; in 2016, the meteorite was reclassified by Dr. Alan Rubin of the University of California, Los Angeles as an ancient EL-melt rock. Al Haggounia is an enstatite chondrite, a rare type of meteorite that, according to spectral analysis, could have come from asteroid 16 Psyche. They lack significant oxygen content, which suggests enstatites could have formed near the center of the solar nebula that created our solar system.

Low in iron, these specimens are distinguished by their large chondrules and variety of weathering stages. Some Al Haggounia pieces are dark brown in color and sport beige veins of clay, while specimens that have experienced less weathering are bluish-grey in color.


Carbonaceous chondrite CV3.2
Witnessed fall in Chihuahua, Mexico, February 8, 1969

Allende is a rare witnessed fall CV3 carbonaceous chondrite. Allende’s nighttime fireball spread over 50 square kilometers was witnessed by hundreds of people in rural Mexico on February 8, 1969 and numerous specimens were picked up by locals the next morning.

Often described as “the most studied meteorite in history,” Allende is one of the most fascinating and desirable space rocks available to collectors. It’s availability for study and commerce is due in large part to Dr. Elbert King, a meteorite specialist who designed NASA’s Lunar Receiving Lab during the Apollo era. As soon as he heard the news, Dr. King traveled from Houston to Chihuahua, in the hope of recovering some samples. He had no idea that Allende would turn out to be a particularly rare type and of great interest to science. The enterprising Dr. King studied Allende for many years and traded specimens with researchers the world over which is, in part, why this meteorite has been so very widely studied. Dr. King’s thrilling Allende adventure is recorded in his enjoyable memoir, Moon Trip.

Allende is rich in carbon and the calcium-rich inclusions (CAIs) in the Allende meteorite are about 4.6 billion years old. Allende also contains microscopic diamonds which are believed to be the last remnants of an exploding sun that predates our own solar system by billions of years! As such, at an estimated 12 billion years, they are by far the oldest things any human has ever touched.


  • SOLD



Ordinary chondrite (H5)
Witnessed fall in Bassikounou, Hodh Ech Chargui, Mauritania on October 16, 2006 at 04:00 UTC

At approximately 4 am on the morning of October 16, 2006 a shower of stones fell in and around the village of Bassikounou in the southeast corner of Mauritania, near the border with Mali. Many stones, including this one, were picked up very shortly after the fall in a 8 km strewnfield, and as a result the pristine black fusion crust has been perfectly preserved.


Ordinary chondrite L6
Found in United States, 1950

This exquisite full slice of the celebrated Kansas black chondrite comes from the Oscar Monnig Meteorite Collection and has been cut marvelously thin to offer fantastic surface-to-weight ratio. Click on photo to see the extremely unusual micro-breccia in detail photos. We’ve never seen this in a meteorite before! Quite dazzling and a gorgeous, impressive display piece.


Carbonaceous chondrite, CBa
Found in Australia, 1930

The strangest space rock! Bencubbin, found in Australia in 1930, gives its name to the ultra-rare bencubbin class. Appearing in every way like an iron (or at least a stony-iron) meteorite, it is, bizarrely, actually a stone carbonaceous chondrite. Showing unique features, this odd bird of the space lanes is as strange as they come, and almost, never available on the collectors’ market.


Achondrite, Ca-rich. Eucrite
Found January 1984 near Camel Donga, on the Nullarbor Plain, Western Australia, Australia

Eucrites are part of the HED (howardite, eucrite, diogenite) group of stones and all three are quite closely related. HED group achondrites are stone meteorites without chondrules, and some specialists believe they may have originate on the large asteroid Vesta.

The total recovered weight of all Camel Donga stones is estimated at only 50 kg, and this unusual and intriguing meteorite is very rarely offered for sale. The Camel Donga strewnfield was discovered in 1984 in a very remote part of Western Australia on the Nullarbor Plain. It is a Ca-rich meteorite and exhibits a remarkably glossy fusion crust, which is typical of this type of meteorite.


Ordinary chondrite LL5
Witnessed fall in Chelyabinskaya oblast’, Russia on February 15, 2013 at 9:22 a.m. (local time)

Every meteorite enthusiast will forever remember the astonishing news of the truly massive fireball and explosions over the Russian city of Chelyabinsk in February of 2013. It was easily the largest meteoritic event since the Sikhote-Alin fall of 1947. Many of these pieces show impact melt features and a dark grey to nearly black interior. This superbolide was traveling at an astonishing speed of 42,900 mph and generated light brighter than sun. The shock wave from the fireball caused damage to over 7,000 buildings spreading across six cities.



Ordinary chondrite H5
Witnessed fall 2 or 3 July 2007 in the daytime Southwest of El Mokhtar, Erg Chech, Timbuktu district, Mali

A new meteorite fall was reported in the Republic of Mali in Western Africa in June or July of 2007, making this stone one of the more recent meteorite arrivals on earth. It is a very fresh fall with extremely rich, black fusion crust. The first specimens were tentatively named Mali, but the name was later officially changed to Chergach, after the nearby town of Erg Chech.  Meteoritical Bulletin states: “Nomads reported the stones fell after a smoke cloud was seen and several detonations were heard over a wide area during daytime in July 2007. The finder of the first meteorites was Mr Ouled Bleila, who died in a car accident on his way back from the trip to the Chergach strewn field in October 2007. According to the Tuareg people from Algeria who visited the fall site in September 2007, the elliptical strewn field stretches for more than 20 km in a northeasterly direction. No fireball was reported.”


Ordinary chondrite L4
Found on April 6, 2015 in Clarendon, Texas

It is perhaps the only meteorite to ever be discovered by a horse. In addition, it happens to be one of the largest chondrites ever found in the United States.

Frank and DeeDee Hommel, owners of the lovely and housewarming Bar H Working Dude Ranch in Clarendon, went on a brief excursion with their horses about the countryside on April 6, 2015. Sometime along their ride, their horses “went crazy” when they encountered and sniffed a rather bizarre 760-pound rock a few acres away from the ranch. They, along with Aerolite Meteorites CEO Geoff Notkin, Aerolite Meteorites’ Christian Meza, and colleague Ruben Garcia (“Mr. Meteorite”) uncovered several more kilograms of fragments from the site.  The main mass now resides at the Texas Christian University in Fort Worth where it will be displayed to thousands of visitor about how close to home one of the most remarkable marvels of the solar system came to be.

Be sure to check out our Meteorite Minute and Minelab Promo videos featuring the Clarendon (c) meteorite!


Ordinary Chondrite CV3
Libya, 1997

Dar al Gani (DAG) 521 is a carbonaceous chondrite that belongs to the CV3 group, the same classification as the celebrated Allende meteorite that fell in Mexico in 1969. The “V” is for Vigarano, a meteorite that fell in Italy in 1910 and is the first known example of this group. CV3s show large chondrules, but little alteration, meaning they have survived, largely unchanged, since the birth of our solar system.
The DAG 521 find consisted of a single stone weighting 1,567 grams and recovered in 1997 on a limestone plateau in Libya, known as Dar al Gani. It was examined and classified by the Museo Nazionale dell’Antartide, Università di Siena in Siena, Italy. It was acquired and prepared by meteorite expert Allan Lang of R.A. Langheinrich Meteorites, shortly after its 1990s recovery and has remained in his collection until now. This rare CV3 is seldom available to collectors and we have not seen a specimen offered for sale for many years.


Ordinary chondrite L4
Found in Western Australia in 1941

South of Dalgety Downs, Australia in 1941, 217 kilograms of broken fragments — which came from a single large mass — were found. Several additional masses were recovered in subsequent decades. Totaling an impressive total find weight of nearly 500 kilograms, making Dalgety Downs the largest L4 meteorite on record to date. The exteriors of this marvelous meteorite have been weathered as it sat on the surface of our planet in a hot desert climate for potentially thousands of years, being effected by the elements. The interiors display chondrules and are a gorgeous pale blue color — beautiful in contrast to the metal flakes.


Ordinary Chondrite H5–6
Found in Mali, Africa, 2013

Dar el Kahal is a rarity among Northwest African meteorites in that it has a name rather than a number. Discovered in northern Mali in 2013 by an artifact hunter it shows multiple classifications within a single rock: in this case H5 and H6. The “H” indicates high iron content, while the numbers represent “recrystallized type 6 and less intensely recrystallized type 5 fragments,” as noted in the Meteoritical Bulletin.

Dar el Kahal is rich in nickel-iron and is also a breccia — essentially a rock made up of fragments of other rocks. Brecciated meteorites are an important tool in studying the history and formation of our solar system. Breccias, by their very nature, indicate geological (or asteroidal) processes, as they are comprised of previously broken rocks from different sources that have been cemented together to create a new matrix. The formation of brecciated meteorites indicate activity — asteroidal collisions, for example — elsewhere in the solar system.


Ordinary Chondrite H5
Found in Tamaulipas, Mexico, 2013

Numerous fragments and several whole stones, totaling 19.62 kg, were found by an American prospector and his hunting partners in 2013 in Sonora, Mexico, while metal detecting for gold nuggets. The first piece (and the largest), a complete individual weighing 2,396 g, was found on the surface in a sandy area on the eastern side of a large dry wash, a few kilometers northwest of the town of El Boludo. A search with metal detectors of the surrounding area produced numerous additional fragments and a few smaller whole stones. We met with the prospector, purchased all known pieces, and proceeded with the classification process. El Boludo is an Aerolite exclusive.


Ordinary Chondrite L3
Found in Mexico, 2013

El Tiro (meaning “the shot”) was discovered in January of 2013 by a gold prospector colleague of ours, close to the small settlement of El Tiro in Sonora, Mexico. Only a single stone was recovered with a total known weight of just 2.4 kilograms. The stone displayed gentle regmaglypts, weathering cracks, and a fair amount of fusion crust. El Tiro’s grey, blue and brown matrix exhibits abundant, multi-colored breccia clasts, metallic flakes, and dark chondrules. We acquired the entire mass from the finder and proceeded with classification. El Tiro is an Aerolite exclusive.


Ordinary chondrite H5
Witnessed fall in Burkina Faso, March 5, 1960

A large number of meteorites fell on March 5, 1960 over the African nations of Burkina Faso (previously the Republic or Upper Volat) and the resulting thunderous sound was heard over 100 kilometers away! Many pieces were later found by farmers working in their fields. Originally named Gao, its was later determined by scientists to be identical to another African meteorite, Genie, and the two names were fused into one. Specimens show fusion crust and an attractive ochre-patina. Many also show classic features of orientation, including rollover lips.



Most incoming potential meteorites spin and tumble as they plummet through the atmosphere. Occasionally, one will maintain a fixed orientation towards the surface of our planet, causing the leading edge to ablate into a shield, nose cone, or bullet shape. When meteorites ablate, some of their mass is removed as a result of vaporization. Meteorites which display such features are quite rare, highly collectible, and are described as oriented. Oriented meteorites were studied by early NASA spacecraft designers and the leading edges of such meteorites are reminiscent of the heat shields on Mercury, Gemini, and Apollo space capsules.


Ordinary chondrite L4
Found in United States, 1995

An Arizona gold prospector, Jim Kriegh, discovered ancient stone meteorites in an area of arroyos in Mohave County, Arizona. His friend and fellow metal detectorist, Twink Monrad, joined him in the hunt and they spent years carefully documenting their finds. Gold Basin has been described as “one of best mapped strewnfields in history.” We filmed a first season episode of Meteorite Men at this famous site in 2009.


While Gold Basin doesn’t look particularly interesting on the outside, when prepared in the lab, it reveals a wonderland of colorful relict chondrules, Impressionist-like mists of matrix color, with a peppering of metal flakes. These half stones were cut and expertly polished on a diamond lap to show off their gorgeous interiors.




Ordinary chondrite L6
Found in Australia in 1966

Hamilton is a stone, veined olivine – hypersthene chondrite meteorite found near Hamilton Station in Queensland, Australia. We are pleased to present Hamilton, as we have not seen them in quite some time. These coffee colored chondrite part slices came out of an old collection and were purchased by Geoffrey in the back of an old train car where they have been stored. They are sliced thick and stand up naturally on their own. Marvelous!


Ordinary chondrite L/LL6
Witnessed fall in United States, 1912

July 19, 1912, on a hot and dry desert summer evening, a series of loud booms, and several explosions rocked the quiet town of Holbrook, Arizona. Many thousand stones showered the ground, most the size of a pea. The largest weighing just 6 kilograms (14 pounds). Initially, an estimated 14,000 stones were recovered. Most with pristine rich-black fusion crust, which is obtained during it’s fiery journey through our atmosphere.

A team of esteemed meteorite hunters visited the area to celebrate the falls recent 100 anniversary, each successfully returning with a pea sized treasure of their own. Due to the size and age of the fall, Holbrook has been an extremely well studied meteorite. It has educated scientists in the rate of terrestrial weathering (the slow decay of the delicate rind called fusion crust).


Stone H4-5
Found in Al Wusta, Oman, 2005

Jiddat al Harasis 264 is named after the desert where it was found in Oman. The desert is the largest strewnfield of meteorites in the country and home to many endangered species, including the Arabian oryx and the Arabian gazelle. 

Classified as a stone H4-5, JaH 264 comes from the high-iron chemical group of ordinary chondrites and contains abundant chondrules. Science indicates that the H chondrite parent body could be asteroid 6 Hebe, the fifth-brightest object in the asteroid belt. Discovered by Karl Ludwig Hencke, Hebe was named after the Greek goddess of youth. 


Ordinary chondrite L3 – 6
Found in Northwest Africa, 2000

The enigmatic Northwest Africa (NWA) 869 meteorite, found in the year 2000 is, geologically one of the more interesting stone meteorites available to collectors and has been described as a “meteorite science classroom in a single rock.” NWA 869 comes with a highly unusual classification, L 3–6, meaning it exhibits characteristics of different meteorite types (L3 through L6) within a single mass. It is almost as if dissimilar materials were crushed together into a new form. And, in fact, that may be exactly what happened.

NWA 869 is a regolith breccia. A regolith is a loose deposit that lies on top of solid rock. Regoliths are seen here on Earth, on the moon, and also on some asteroids. A terrestrial Earth regolith might form as a result of several different actions working together: the weathering of rock by freeze/thaw process, or wind abrasion, for example, and often in combination with plant roots expanding cracks in the rock. There is no wind on the moon, and — we assume — no plants on the asteroids, so extraterrestrial regoliths must be generated by very different processes: likely the repeated impact of meteorites upon the surface of an asteroid, or the collision of asteroids. This regolith breccia is, therefore, believed to be a mix of materials from many sources (meteorites / asteroids) that formed in space and later landed here on Earth, bringing its apocalyptic history with it. In other words, meteorites landing on the surface of NWA 869s parent body (its original “home” asteroid) created a new mixture of materials. So, the meteorite NWA 869 may actually be a collection of many different meteorites in one!



We consider NWA 869 to have one of the most attractive interiors of any chondrite and these gorgeous full slices show this fascinating chondrite at its absolute best. All pieces have been expertly prepared by one of our top labs and meticulously finished on a diamond lap to the very highest standards.


Carbonaceous chondrite (CV3), Found in Algeria, 2005

With its shiny black exterior and dark brown interior, punctuated by large orange chondrules, this interesting carbonaceous chondrite looks very atypical from most members of its group. Classified by T. Bunch and J. Wittke it is officially described in the Meteoritical Bulletin has having “well-defined chondrules, chondrule fragments, and refractory inclusions set in a slightly weathered matrix.” Our full slices, half stones, and end cuts have been highly polished on a diamond lap to show 4502’s intriguing interior features in the best possible light. With its colorful undifferentiated chondrules, 4502 is a glimpse back to the formation of our solar system, over 4.6 billion years ago.


Achondrite meteorite, aubrite
Found in Northwest Africa, 2007

This aubrite is one of fifty from the Achondrite, aubrite class. It is heavily brecciated, telling the tale of a violent history for it’s parent body. Most aubrites are are witnessed falls or finds from the blue-ice fields of Antarctica. Their fragile composition and light colored fusion crust makes these meteorites extremely difficult to find. Only 16 aubrites have been recovered from the hot deserts of Africa. Apparent on NWA 4799 is evidence of terrestrial desert weathering. Simply incredible!


Carbonaceous Chondrite CV3
Found in Northwest Africa, 2009
(name provisional)

Carbonaceous chondrites are a rare and scientifically important group of stone meteorites. As Buseck and Hua stated so intriguingly in their 1993 paper: “They are nebular leftovers and thus invaluable recorders of some of the oldest and best kept secrets … of the solar system.” In other words, carbonaceous chondrite meteorites carry within them the last traces — sometimes in the form of tiny diamonds — of extremely ancient and long-vanished suns or planets that pre-dated our own solar system by billions of years. As such, carbonaceous chondrite meteorites contain the oldest materials that any human has ever encountered.





Ordinary Chondrite, H3.4
Found in Northwest Africa, 2011

This highly unusual meteorite was found in 2011. It shows an uncommon cocoa-colored background, sprinkled with beautifully-preserved, dusty-grey chondrules of varying sizes.


Carbonaceous chondrite, CV3, Found in Northwest Africa, 2012

A kaleidoscope of chondrules! The colorful, rounded grains clearly visible in NWA 7454 are chondrules that formed in the solar nebula 4.6 billion years ago, as our solar system was being built. These tiny glass spheres hold within them a key to understanding how the rocky bodies of the solar system — including our very own home planet Earth — were born.



Ordinary Chondrite, L5 melt breccia
Found in Northwest Africa, 2012

Northwest Africa 7457 is one of nine specimens classified as L5 melt breccia, a material formed when extreme pressure and heat generated by an significant impact partially melts the parent rock. These meteorites show a deformed and melted matrix as a result of the collision. The total known weight of this rare meteorite is only 15.5 kilograms.


HED Achondrite, Diogenite, Found in Western Sahara, 2013

Vesta is the largest and brightest asteroid in the asteroid belt and the second largest body overall (after the dwarf planet Ceres), with an average diameter of about 525 km (326 miles). That is pretty close to the size of the State of Colorado. Vesta was discovered by the German astronomer Heinrich Wilhelm Olbers in 1807.

A couple of billion years ago two massive impacts ejected part of Vesta’s mass and some of that material landed here on Earth as HED (howardite, eucrite, and diogenite) meteorites. It’s astonishing to consider that when you look at photographs of Vesta, or eve through a powerful telescope, the actual craters from which the HED meteorites were blasted out can easily be seen, such as Rheasilvia which is over 300 miles wide. So, you could hold one of these HED meteorites in your hand, look at a photo of Vesta, and say to yourself: This came from right there!

The other Vesta meteorite types — howardites and eucrites — journeyed to Earth from that giant asteroid’s surface, but diogenites are different. They originated deep underground and were delivered here on because of the catastrophic meteorite impacts that occurred on Vesta in the distant past. Diogenites are cooled crystalline magma (or lava), excavated from deep inside Vesta by a meteorite impact so tremendous, it blasted right through the crust to the interior of our largest asteroid. The excavated material was expelled into space and some of it eventually landed on Earth as diogenite meteorites.


HED achondrite (Eucrite, monomict)
Found in Northwest Africa, 2015

Eucrites are rare achondrite (without chondrules) meteorites that belong to the HED class. HED meteorites are thought to have originated within the large asteroid Vesta, making them part of only a tiny handful of meteorites with a specific known origin point — lunar and Martian meteorites being the others. Eucrites are particularly difficult to find in the field as — unlike the vast majority of other meteorites — they contain little or no iron, so will not attract strongly to a magnet. The eucrite NWA 10514 is a marvelous stone with a ton of character. There are only 12 kilograms of this meteorite available in the world.


Northwest Africa 10688 was purchased in Morocco in 2016; its exact find location is unknown. It was classified as an L4 ordinary chondrite, meaning that it displays a large percentage of chondrules and contains low iron. Though the parent bodies of ordinary chondrites remain a mystery, studying the composition of meteorites helps researchers piece together what they might have looked like. Some research indicates that L chondrite meteorite may have had their origin in the Ordovician meteor event, which occurred about 467.5 million years ago. Scientists theorize that during this event, fragments from the L chondrite parent body, believed to have been destroyed about 468 million years ago, that had made it into Earth-crossing orbits rained down on Earth. Some sources theorize that this event may have contributed to, or even instigated, the Great Ordovician Biodiversification Event, one of the greatest evolutionary events in the history of life on Earth; it spanned the entire globe and saw vast increases in the variety of types of creatures that inhabited this planet.


Rumuruti chondrite (R4)
Found in Northwest Africa, Classified April 2018

Petrography: (A. Irving and S. Kuehner, UWS) The specimen is a breccia mostly composed of well-formed, relatively small chondrules (apparent diameter 250±150 µm, N = 12) in a finer grained matrix (~30 vol.%), but some petrologically-similar, angular lithic clasts (including type 3 and type 4 clasts) are also present. Both olivine and orthopyroxene have very magnesian cores, but the predominant mafic minerals are much more ferroan. Other minerals are clinopyroxene, sodic plagioclase, pentlandite, pyrrhotite and magnetite. – As listed by the Meteoritical Bulletin

Also: fascinating to learn this R4 may contain R3 material!


Eucrite, melt breccia
Found in Northwest Africa, Classified December 2018

A rare eucrite-melt breccia from Northwest Africa, NWA 12265 was found in 2015. Howardites, eucrites, and diogenites are meteorites that have all originated from Vesta. These are fascinating to collectors and scientists because we rarely are able to identify where meteorites come from. To have a known, physical sample from Vesta to study is extremely valuable to planetary scientists. Furthermore, for collectors, having the opportunity to own a piece of a scientifically significant meteorite is exciting. Eucrites are basalt, or cooled lava that once flowed on Vesta. They take their name from the Greek word “eukritos,” meaning “easily distinguished.” This refers to their being light in weight and interior. Eucrites are difficult to spot and thus are incredibly rare. Scientists studying melt breccias think these rocks could be tied to large impact craters on Vesta.


Carbonaceous chondrite (CV3)
Found in Niger, 2018

These impressive Northwest Africa (NWA) 12322 carbonaceous chondrite (CV3) meteorite slices are packed with abundant multi-colored chondrules. Containing organic compounds and divided into five subclasses, there is little in the world of meteorites that fascinates like carbonaceous chondrites. Rare and very ancient, some have been shown to contain water, carbon, and even amino acids, suggesting they may have brought the building blocks of life to Earth. As in this specimen, the CV3 sub-group often displays beautiful chondrules (small, glassy spheres) that formed 4.6 billion years ago, at the very dawn of the solar system.


Carbonaceous chondrite, CK5
Morocco, 2018

Found in 2018, NWA 12925 was purchased in Morocco before being submitted for classification. The stone displays a delicate, fusion-crusted exterior and a grey interior sporting some scattered visible CAIs and large chondrules. Though the parent body of these space rocks has yet to be identified, scientists think the anomalies found in the meteorite’s rare earth element abundances are property these rare rocks inherited from the refractory precursors the early solar nebula produced. 

NWA 12925 is a carbonaceous chondrite, meaning that they contain organic compounds, even water, and amino acids. It’s important to note that while they contain compounds essential to life, the presence of these compounds in these meteorites does not imply that life was present in them or on the parent body from which the meteorite originated. The CK group, which takes its name from the Karoonda meteorite that fell in Australia, is described as being “distinguished by abundant fine-grained matrix (~75 vol%), mm-sized chondrules that lack igneous rims, relatively few refractory inclusions, and a high degree of oxidation,” by the Meteoritical Society. 


Northwest Africa 12929
HED Achondrite Eucrite, Monomict

Found in Morocco, this eucrite is thought to have originated from asteroid Vesta! A breccia is a rock made up of fragments of other rocks that have been compressed or cemented together. Meteorite breccias show us that some meteorite parent bodies are, or were, active and have experienced some geologic processes similar to those found on Earth. The H.E.D (Howardite, Eucrite and Diogenite) classes of meteorites are thought to have Asteroid Vesta as their parent body, meaning they were once part of that asteroid.

The exteriors of these marvelous rocks are awesomely mottled and vesiculated/melt pocketed in appearance. While the interiors are a cluster of interesting mix of melt breccia set on a black groundmass. Captivating!


Northwest Africa 13279
Carbonaceous chondrite, (CV3)

NWA 13279 was purchased in 2019 from a Moroccan dealer and classified as an exciting CV3. The CV3s are a subgroup of carbonaceous chondrites that take their name from the Vigarano meteorite, a witnessed fall that fell in 1910 in Italy. 

Carbonaceous chondrites are rare and very ancient; they contain organic compounds like carbon, water, and even amino acids. The CV3s, a special group of carbonaceous chondrites, exhibit large chondrules, some of which are surrounded by igneous rims, and large inclusions. These chondrules are believed to have formed 4.6 billion years ago, at the very dawn of the solar system. 

CV3s in particular are unequilibrated chondrites, meaning that the minerals they contain (like olivine and pyroxene) show a wide range of compositions. This suggests that these minerals formed in the solar nebula under volatile conditions. The solar nebula was a flat, rotating disk of gas and dust which condensed to form the solar system.


Northwest Africa 13917 
Winonaite, a primitive achondrite

Purchased in 2020 in Morocco, NWA 13917 proved to be a remarkable find. The stone was classified as a Winonaite, a primitive achondrite. 

Primitive achondrites are “non-chondrites,” in that they are pieces of differentiated planetary bodies, like the Moon or Mars, which are defined as having distinct layers, like a core, mantle, and crust. Planetary differentiation occurs on planets, dwarf planets, asteroids, and moons. They are deemed primitive because scientists have observed that some have relic chondrules and compositions that closely resemble those of chondrites, meaning that the stones have retained much of their original chondritic features. 

The interior of NWA 13917 reveals fine-grained metal veins, resembling lightning bolts, set in a mosaic of minerals. Forsterite, also known as “white olivine,”  was also detected in NWA 13917; in 2005, data returned by NASA’s Stardust probe indicated that forsterite is present in cometary dust. In 2011, NASA’s Spitzer Space Telescope observed tiny crystals of forsterite in clouds of gas surrounding a forming star. NWA 13917 exhibits a low shock stage, meaning that the matrix has not been extensively fractured. 


Stone meteorite (H and L chondrites)

Official numbers and names are assigned only to meteorites that have gone through the complex and time-consuming process of classification by an accredited laboratory. There are only a small number of labs in the world authorized to do this type of specialized work. As resources are limited, finders / owners sometimes elect not to go through the classification process and, instead, assign an unofficial designation, like “NWA XXX” to a particular meteorite. Such is the case with these attractive stones.


Achondrite, Aubrite
Witnessed Fall in Norton County, Kansas United States, 1948

Norton County, a rare aubrite meteorite with a white interior, crashed to Earth in Kansas in 1948. The 2,300-lb main mass is now the centerpiece of the Institute of Meteoritics museum at UNM Albuquerque. These unusual historic specimens come directly from IOM/UNM and display original collection numbers from the institute. They are still listed in the UNM catalog. You can verify this by visiting the UNM collection page and searching for “Achondrite”, “Achondrite Groupings”, “All Achondrite Groups”, and “All Brecciation Types” for Norton County.



Olivine-bronzite (H5)
Witnessed fall on December 15, 1978, 1850 hrs. in Zacatecas, Mexico, 250 km SW. of Monterrey

The sound of the tempest, bone-shattering roars of a bolide thundered over the cold skies above north-central Mexico on December 15 in 1978. The brilliant spectacle could be seen as far as 200 kilometers away as it rained several meteorites in a large 10-kilometer ellipsis a little ways north of the (no-longer-sleeping) village of Nuevo Mercurio. Today, the Nuevo Mercurio strewnfield has produced over 300 individual stones totaling up to about 50 kilograms. This olivine-bronzite chondrite boasts a lasting bold fusion crust and carries with it a reminder of the early Christmas gift of a jolting clap from the cosmos.